Welcome!

The meeting will begin momentarily.

How to Use Zoom Webinar:

- Zoom webinar will not permit access to your camera.
- Please submit comments/questions in writing through the Q&A function.
- Written comments/questions can be submitted at any time and will be answered or discussed at designated points during the meeting by the panelists.
- Click "Raise Hand" if you would like to speak your comments/questions at designated points with the panelists. A moderator will grant access to your device's microphone.
PANEL OF SPEAKERS

MODERATOR

Carly Bond, Historic Preservation Specialist, Smithsonian Facilities

PRESENTERS / PANELISTS

Sharon Park, FAIA, Assoc. Director of Historic Preservation, Smithsonian Facilities
Brenda Sanchez, FAIA, Sr. Design Manager, Smithsonian Facilities
Christopher Lethbridge, Architect/Program Manager, Smithsonian Facilities
Lauren Brandes, RLA, ASLA, Smithsonian Gardens
Matthew Chalifoux, FAIA, Sr. Historic Preservation Architect, EYP-Loring, LLC
Anthony Bochicchio, AIA, Project Manager, EYP-Loring, LLC
Faye Harwell, FASLA, Landscape Architect, RHI (Rhodeside and Harwell)
AGENDA

- Review RoHC Scope – Revitalize Castle
- Design Actions
 - Extent of Excavation
 - Areaways
 - Seismic Joint Cover
 - Perimeter Security Alternatives
 - Landscape
 - Hardscape
- Project Schedule
- Next Steps

How to Use Zoom Webinar:
- Zoom webinar will not permit access to your camera.
- Please submit comments/questions in writing through the Q&A function.
- Written comments/questions can be submitted at any time and will be answered or discussed at designated points during the meeting by the panelists.
- Click "Raise Hand" if you would like to speak your comments/questions at designated points with the panelists. A moderator will grant access to your device's microphone.
RoHC Revitalize Castle

- Castle and AIB/Central Utility Plant are now separated into two projects

Revitalize Castle Scope

- Enhanced Quad Loading Dock
- Castle B1 Service Connector
- Castle Mechanical Equipment and Distribution Level
- Quad - Future B2 Public Connection
- Seismic Base Isolation and Control Joint
- Areaways, Egress Doors, Basement Windows
- Accessible Entrances
- Exterior Rehabilitation
- Blast Windows
- Roof Changes, Mechanical Vents, Elevators
- 4th Floor Egress
- Landscape around Castle
- Perimeter Security – Jefferson Drive
RoHC Revitalize Castle

MODIFICATION TO THE SMITHSONIAN INSTITUTION BUILDING & BASEMENT LEVEL EXPANSION

- The below grade construction will create areas for building systems and support spaces that will free up areas in the historic building for public uses.

- The basement floor of the SIB (Castle) will be lowered approximately three feet to provide better space for public functions. Below the basement a mechanical level for equipment and systems routing will be created that aligns with the adjacent loading dock and B1 level.

- A future public connection is enabled from the SIB (Castle) to the Quad on the B2 level. This connection will become public under the future Quadrangle renovation project.
EXTENT OF EXCAVATION
SMITHSONIAN INSTITUTION BUILDING (SIB)

EXTENT OF EXCAVATION

LIMIT OF DISTURBANCE

RIPLEY CENTER

THE CASTLE

ARTS AND INDUSTRIES

Smithsonian Institution
SMITHSONIAN INSTITUTION BUILDING (SIB)

EXTENT OF EXCAVATION – BUILDING SECTION

- MEP ROOMS
- SIB EXTENSION
- LOWERED BASEMENT
- PERIMETER FEATURE

Smithsonian Institution
SMITHSONIAN INSTITUTION BUILDING (SIB)

EXTENT OF EXCAVATION – LEVEL B2

- EXTENT OF EXCAVATION
- BELOW GRADE CONSTRUCTION

- CISTERN + PUMP PIT
- ELEVATOR PIT
- CONCRETE TRENCH
- FUTURE CONNECTION TO QUADRANGLE BUILDING
- RIPLEY CENTER
- QUADRANGLE BUILDING
SMITHSONIAN INSTITUTION BUILDING (SIB)

EXTENT OF EXCAVATION – LEVEL B1

- EXTENT OF EXCAVATION
- BELOW GRADE CONSTRUCTION

LOADED PORTION OF STEAM TUNNEL

RIPLEY CENTER

LOADING DOCK

QUADRANGLE BUILDING

MEP ROOMS

SIB EXTENSION
SMITHSONIAN INSTITUTION BUILDING (SIB)

EXTENT OF EXCAVATION – LEVEL B0

- EXTENT OF EXCAVATION
- BELOW GRADE CONSTRUCTION

EXISTING STEAM TUNNEL
LOWERED PORTION OF STEAM TUNNEL

RIPLEY CENTER
QUADRANGLE BUILDING
SIB EXTENSION BELOW
THE CASTLE
AREAWAYS
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL

- SEISMIC MOAT WITH JOINT COVER (AT GRADE)
- JOINT COVER (IN AREAWAYS / WINDOW WELLS)
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL – SOUTHWEST AREAWAY ALIGNMENT (SOUTHEAST AREAWAY SIMILAR)

E EGRESS DOOR

EGRESS PATH

ALIGN AREAWAY PERIMETER WALLS WITH HISTORIC BUTTRESSES
SMITHSONIAN INSTITUTION BUILDING (SIB)

TRANSVERSE SECTION – SCHERMER HALL

- MEP ROOMS
- SIB EXTENSION
- LOWERED BASEMENT
- PERIMETER FEATURE
SMITHSONIAN INSTITUTION BUILDING (SIB)

TRANSVERSE SECTION – GREAT HALL

- MEP ROOMS
- SIB EXTENSION
- LOWERED BASEMENT
- PERIMETER FEATURE

Smithsonian Institution

SMITHSONIAN REVITALIZATION OF THE HISTORIC CORE 20
SMITHSONIAN INSTITUTION BUILDING (SIB)

TYPICAL SEISMIC MOAT AT NORTH ELEVATION

SECTION AT BUTTRESS

SECTION BETWEEN BUTTRESSES
SMITHSONIAN INSTITUTION BUILDING (SIB)

TRANSVERSE SECTION – EAST RANGE

- MEP ROOMS
- SIB EXTENSION
- LOWERED BASEMENT
- PERIMETER FEATURE

WINDOW WELL
GUARDRAIL
CASTLE
AREAWAY
GUARDRAIL

Smithsonian Institution
TYPICAL WINDOW WELL

SECTION AT TYPICAL WINDOW WELL

*NO SEISMIC JOINT COVERS REQUIRED IN WINDOW WELLS.
SMITHSONIAN INSTITUTION BUILDING (SIB)

TYPICAL AREAWAY

SECTION AT AREAWAY
SMITHSONIAN INSTITUTION BUILDING (SIB)

AREAWAY VISIBILITY

WEST RANGE (NORTH)

Note: The design of the railing at the areaway is in development—this image utilizes the design of the existing railings at the north entrance ramp.
SMITHSONIAN INSTITUTION BUILDING (SIB)

AREAWAY VISIBILITY

SOUTHWEST AREAWAY

Existing Southwest Facade

Conceptual Seismic Moat Cover Visualization
Note: The design of the railing at the areaway is in development- this image utilizes the design of the existing railings at the north entrance ramp
SMITHSONIAN INSTITUTION BUILDING (SIB)

AREAWAY VISIBILITY

SOUTHEAST AREAWAY

Existing Southeast Facade

Conceptual Seismic Moat Cover Visualization

Note: The design of the railing at the areaway is in development—this image utilizes the design of the existing railings at the north entrance ramp.
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL

- SEISMIC MOAT WITH JOINT COVER (AT GRADE)
- JOINT COVER (IN AREAWAYS / WINDOW WELLS)
- JOINT COVER ANCHORED TO NEW CONCRETE 1,040 LINEAR FEET
- ALL OTHER LOCATIONS ANCHORED TO HISTORIC SANDSTONE 335 LINEAR FEET

Smithsonian Institution
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL

In-Person Review of Material Samples on September 7, 2022

- Comments from Consulting Parties preferred the samples E (Academy Black) and F (Olympic Black)
- Consulting Parties requested a third gray granite in-between the colors and variety of Samples E and F
- Additional comments on the samples are welcome

In-Person Viewing Locations

Location 1: Jefferson Drive, near the apse of West Wing (Commons).
Location 2: Jefferson Drive, near the east entrance of the North Tower.
Location 3: Haupt Garden, outside South Entrance.

Six Granite Alternatives Available for Consideration at Each Viewing Location

A: Royal Auburn, Coldspring Granite
B: Prairie Brown, Coldspring Granite
C: Carnelian, Coldspring Granite
D: Radiant Red, Coldspring Granite
E: Academy Black, Coldspring Granite
F: Olympic Black, Vermont Stone Art
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL

Project Scope

- Seismic joint as regular as possible.
- Cover plate width varies to accommodate the Castle’s unique geometry.

SEISMIC JOINT COVER WITH STONE EDGING

SEISMIC JOINT COVER WITH FINISHED METAL EDGE
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL

Comments from some Consulting Parties:

• Suggested that there may be areas of the building (for instance around the Commons) where we want the joint cover to be larger than the 1’-6” typical. 20-24” may be more appropriate.

![Conceptual Seismic Joint Cover Visualization](image)

PARTIAL PLAN

1’-2” JOINT COVER WITH 6” GRANITE CAP

GRANITE CAP CAN BE EXTENDED AS NEEDED FOR DESIRED AESTHETIC

Conceptual Seismic Joint Cover Visualization
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL

Comments from some Consulting Parties:

- Concern about the number of joints in the stone for the seismic joint cover (depth).

PARTIAL PLAN

Conceptual Seismic Joint Cover Visualization
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL – JOINT OPTION 1A

SMITHSONIAN REVITALIZATION OF THE HISTORIC CORE 34

SECTION OF SEISMIC JOINT COVER BETWEEN BUTTRESSES – ANCHORED TO NEW CONCRETE

Conceptual Seismic Joint Cover Visualization
SMITHSONIAN INSTITUTION BUILDING (SIB)

SEISMIC CONTROL – JOINT OPTION 1B

SECTION OF SEISMIC JOINT COVER BETWEEN BUTTRESSES – ANCHORED TO NEW CONCRETE

Conceptual Seismic Joint Cover Visualization
Questions or Comments

MODERATOR
Carly Bond, Historic Preservation Specialist, Smithsonian Facilities

PRESENTERS / PANELISTS
Sharon Park, FAIA, Assoc. Director of Historic Preservation, Smithsonian Facilities
Brenda Sanchez, FAIA, Sr. Design Manager, Smithsonian Facilities
Christopher Lethbridge, Architect/Program Manager, Smithsonian Facilities
Lauren Brandes, RLA, ASLA, Smithsonian Gardens
Matthew Chalifoux, FAIA, Sr. Historic Preservation Architect, EYP-Loring, LLC
Anthony Bochicchio, AIA, Project Manager, EYP-Loring, LLC
Faye Harwell, FASLA, Landscape Architect, RHI (Rhodeside and Harwell)
PERIMETER SECURITY
Conceptual bollard configuration inside porte-cochere

Conceptual bollard configuration at west side of porte-cochere with hardened bench massing taped-out on pavement
SMITHSONIAN INSTITUTION BUILDING (SIB)

PERIMETER SECURITY ELEMENTS

COMMENTS FROM CONSULTING PARTIES

- Explore eliminating wrap-around end
- Explore eliminating bench, use bollards only
- Fixed bollard
- Explore shortening bench by one or two sections
- Explore moving bollards north
- Potential third bollard may be needed for anti-ram certification
- Explore bench design without a stone base
SMITHSONIAN INSTITUTION BUILDING (SIB)

SHORTENED BENCH (3-SECTIONS)

*Curb at lawn to be adjusted for seismic joint
*Curb at lawn to be adjusted for seismic joint
SMITHSONIAN INSTITUTION BUILDING (SIB)

NO WRAP-AROUND END

*Curb at lawn to be adjusted for seismic joint
SMITHSONIAN INSTITUTION BUILDING (SIB)

NO BENCH; 3 BOLLARDS AT PORTE COCHERE

*Curb at lawn to be adjusted for seismic joint
SMITHSONIAN INSTITUTION BUILDING (SIB)

PERIMETER SECURITY ELEMENTS

BOLLARDS
- Typical bollard footing is approximately 30" W x 60" L x 36" D

BOLLARD FOOTING (SHOWN AT GRADE)

BOLLARD FOOTING (SHOWN BELOW GRADE)
SMITHSONIAN INSTITUTION BUILDING (SIB)

PERIMETER SECURITY ELEMENTS

- Bollard foundation to be custom designed by project structural engineer to accommodate both bollard and seismic joint requirements.

BOLLARDS

KEY CAPABILITIES

1. BOLTED LOCTITE & NYLOMED IN CONCRETE FOUNDATION. NO FIELD MORTARING.
2. ONE (1) SINGLE PRE-FABRICATED BOLLARD UNIT TO SET.
3. QUICK INSTALLATION (DRILL HOLES, THEN SET BOLLARDS & POUR CONCRETE).
4. AXIALLY EXCAVATIONS BEING DONE (OVERNIGHT SET & POUR BOLLARD ARRAY IN 1 DAY).
5. UNRESTRICTED BOLLARD SPACING (ONE BOLLARD STOPS VEHICLE IMPACT).

SMITHSONIAN REVITALIZATION OF THE HISTORIC CORE 45
LANDSCAPE
SMITHSONIAN INSTITUTION BUILDING (SIB)

LANDSCAPE PLAN
SMITHSONIAN INSTITUTION BUILDING (SIB)

LANDSCAPE

EGRESS ROUTE THROUGH LANDSCAPE
FROM AREAWAYS
HARDSCAPE
SMITHSONIAN INSTITUTION BUILDING (SIB)

HARDSCAPE

PAVING AT RAMPS
- Exposed aggregate concrete on ramps leading to landings
- Exposed aggregate concrete in keeping with the sidewalks
- Stone proposed for landings, material alternatives in development
SMITHSONIAN INSTITUTION BUILDING (SIB)

HARDSCAPE

PAVING AT SOUTH ENTRANCE
• Brick pavers and stone to match existing Haupt Garden materials
• Brick pavers may be salvaged
PROJECT SCHEDULE
RoHC Revitalize Castle - Project Schedule

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castle Closes – Staff and Collections Moves Completed</td>
<td>February 2023</td>
</tr>
<tr>
<td>Telecommunications Hub Relocation Construction Completed</td>
<td>February 2023</td>
</tr>
<tr>
<td>Castle Construction Start</td>
<td>March 2023</td>
</tr>
<tr>
<td>Portions of Castle Reopen for 2026 Activities</td>
<td>Spring 2026</td>
</tr>
<tr>
<td>Castle Façade and Public Access Area Construction Resumes</td>
<td>Fall 2026</td>
</tr>
</tbody>
</table>
RoHC Revitalize Castle – Upcoming Section 106 Consultation Meetings

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
<th>Meeting Content *</th>
</tr>
</thead>
</table>
| Consulting Parties Meeting #7 | October 26, 2022 | • Updated Assessment of Effects
 • South Tower Elevator |
| Consulting Parties Meeting #8 | November 2022
 • Meeting cycle falls on November 23rd
 • Put in chat your preference to schedule the meeting for the 16th or the 30th | • Updated Assessment of Effects
 • TBD |

* Subject to Change
Section 106 Consultation – Inclusion of Interiors

- SI, National Capital Planning Commission, and Advisory Council on Historic Preservation have concluded discussions on the inclusion of the review of interior work in Section 106 consultation on the RoHC Revitalize Castle.
- The legal concept is whether the interior and exterior components have “independent utility” from one another. In other words, do the interior and exterior components have separate and distinct purposes / functionality or do they only work together?
- NCPC and the Advisory Council concurred on a memorandum on the extent of NCPC’s limited interior Section 106 obligation.
- This memorandum will be available on the RoHC project webpage after this meeting: https://www.sifacilities.si.edu/historic-core

- SI and NCPC agree that the following exterior actions have an associated interior action that will be included in the Section 106 consultation process to fulfill our collective Section 106 obligations.
 - Basement level egress doors
 - Blast windows
 - Additional actions may be included as consultation continues during design development.
Section 106 Consultation – Inclusion of Interiors

Basement Level Egress Doors
- Addition of new, below grade space necessitates the addition of new exterior doors for egress purposes.
- Exterior egress doors are required and connect to interior changes with the associated egress path.
- Exterior egress doors would not be functional (would not have “independent utility”) without the connected interior changes.

Blast Windows
- Blast resistant windows require temporary displacement of historic finishes on the interior of the Castle, adjacent to the masonry openings.
- This is required to imbed structural supports to adequately brace the blast resistant windows.
- Alterations to historic finishes around the masonry openings have no independent utility or rational need without the blast windows.
RoHC Revitalize Castle – Next Steps

Comments are welcome in writing anytime

Please submit comments to: BondC@si.edu

Please visit the project webpage: https://www.sifacilities.si.edu/historic-core

Contact Carly with questions or any trouble with the recurring Zoom Webinar

<table>
<thead>
<tr>
<th>Upcoming Additional Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCPC Revised</td>
</tr>
<tr>
<td>Preliminary Review</td>
</tr>
</tbody>
</table>
Questions or Comments

MODERATOR
Carly Bond, Historic Preservation Specialist, Smithsonian Facilities

PRESENTERS / PANELISTS
Sharon Park, FAIA, Assoc. Director of Historic Preservation, Smithsonian Facilities
Brenda Sanchez, FAIA, Sr. Design Manager, Smithsonian Facilities
Christopher Lethbridge, Architect/Program Manager, Smithsonian Facilities
Lauren Brandes, RLA, ASLA, Smithsonian Gardens
Matthew Chalifoux, FAIA, Sr. Historic Preservation Architect, EYP-Loring, LLC
Anthony Bohicchio, AIA, Project Manager, EYP-Loring, LLC
Faye Harwell, FASLA, Landscape Architect, RHI (Rhodeside and Harwell)